If it's not what You are looking for type in the equation solver your own equation and let us solve it.
m^2+21m=198
We move all terms to the left:
m^2+21m-(198)=0
a = 1; b = 21; c = -198;
Δ = b2-4ac
Δ = 212-4·1·(-198)
Δ = 1233
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1233}=\sqrt{9*137}=\sqrt{9}*\sqrt{137}=3\sqrt{137}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(21)-3\sqrt{137}}{2*1}=\frac{-21-3\sqrt{137}}{2} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(21)+3\sqrt{137}}{2*1}=\frac{-21+3\sqrt{137}}{2} $
| f=9/5(191.8-273.15)=12 | | -m=10 | | 3.4-w=9,7 | | -8q=40 | | s^2–20s–21=0 | | 4/5+3=1/10x-4 | | (4x-3)(5+2x)=0 | | 25+2x=40 | | 7x+60=-3x | | 3p^2+29p–10=0 | | 3(2x-1)-4x=x+5 | | 3p2+29p–10=0 | | 4y+8-10y=-6y+8 | | x+0.1x=45 | | 4k=-2+6 | | 120=(2x+3)+2(2x-2) | | r/4+11=-24 | | m^2–17m+16=0 | | 4k=-2+12 | | x^2+0.6x-1.6=0 | | f^2+13f=0 | | x+1x=45 | | x^2+0.6-1.6=0 | | 4k=-2+18 | | 4k=-2+24 | | -48=17x-9x | | 4k=-2-18 | | (x-11)(x-6)=0 | | d2+7d–8=0 | | Y=x/6+8 | | 8y-2y+y-7y+y=2 | | d^2+7d–8=0 |